Skip to main content
Log in

Controllable growth and characterization of isolated single-walled carbon nanotubes catalyzed by Co particles

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Discrete Co catalytic nanoparticles with small diameters are obtained by pulsed vacuum arc evaporation on Si/SiO2 substrates, which are used for the growth of isolated single-walled carbon nanotubes (SWNTs) by an ethanol chemical vapor deposition approach (CVD). The distributions of catalytic nanoparticles change with the number of arc pulses, which allows control of the nanotubes formation. We find that an increase of ethanol pressure during CVD growth can change SWNTs from isolated ones into bundles. A new growth mechanism which combines a tip and base model for SWNT growth has been tentatively proposed. It is suggested that the small size catalytic particles prepared by pulsed arc evaporation have a potential advantage for small diameter SWNT growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), Carbon Nanotubes Synthesis, Structures, and Applications (Springer, Berlin, 2001)

  2. S.J. Tans, A.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  3. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L. Geerligs, C. Dekker, Nature 386, 474 (1997)

    Article  ADS  Google Scholar 

  4. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)

    Article  ADS  Google Scholar 

  5. K. Matsumoto, S. Kinoshita, Y. Gotoh, K. Kurachi, T. Kamimura, M. Maeda, K. Sakamoto, M. Kuwahara, N. Atoda, Y. Awano, Japan J. Appl. Phys. 42, 2415 (2003)

    Article  ADS  Google Scholar 

  6. H. Dai, Phys. World 13, 43 (2000)

    ADS  Google Scholar 

  7. H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, M. Chapline, J. Phys. Chem. B 103, 11246 (1999)

    Article  Google Scholar 

  8. J. Kong, A.M. Cassell, H. Dai, Chem. Phys. Lett. 292, 567 (1998)

    Article  ADS  Google Scholar 

  9. J. Kong, H. Soh, A. Cassell, C.F. Quate, H. Dai, Nature 395, 878 (1998)

    Article  ADS  Google Scholar 

  10. A. Cassell, J. Raymakers, J. Kong, H. Dai, J. Phys. Chem. B 103, 6484 (1999)

    Article  Google Scholar 

  11. A. Cassell, N. Franklin, T. Tombler, E. Chan, J. Han, H. Dai, J. Am. Chem. Soc. 121, 7975 (1999)

    Article  Google Scholar 

  12. N. Franklin, H. Dai, Adv. Mater. 12, 890 (2000)

    Article  Google Scholar 

  13. J. Hafner, M. Bronikowski, B. Azamian, P. Nikolaev, D. Colbert, R. Smalley, Chem. Phys. Lett. 296, 195 (1998)

    Article  ADS  Google Scholar 

  14. J. Hafner, C. Cheung, C.M. Lieber, J. Am. Chem Soc. 121, 9750 (1999)

    Article  Google Scholar 

  15. M. Su, B. Zheng, J. Liu, Chem. Phys. Lett. 322, 321 (2000)

    Article  ADS  Google Scholar 

  16. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B 105, 11424 (2001)

    Article  Google Scholar 

  17. A.G. Souza Filho, S.G. Chou, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, L. An, J. Liu, A.K. Swan, M.S. Ünlü, B.B. Goldberg, A. Jorio, A. Grüneis, R. Saito, Phys. Rev. B 69, 115428 (2004)

    Article  ADS  Google Scholar 

  18. Y. Agawa, K. Yamaguchi, Y. Hara, S. Amano, T. Horiuchi, G. Shen, ULVAC Tech. J. 57E, 1 (2003)

    Google Scholar 

  19. Y. Yamamoto, Y. Agawa, Y. Hara, S. Amano, A. Chayahara, Y. Horono, K. Fujii, Proc. 12th Int. Conf. Ion Implantation Tech. (1998) p. 1148

  20. C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Appl. Phys. Lett. 77, 2767 (2000)

    Article  ADS  Google Scholar 

  21. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga,A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, J. Appl. Phys. 90, 5308 (2001)

    Article  ADS  Google Scholar 

  22. M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49, 705 (2000)

    Article  ADS  Google Scholar 

  23. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)

    Article  ADS  Google Scholar 

  24. K. Sato, R. Saito, private communications

  25. A. Jorio, M.A. Pimenta, A.G. Souza Filho, G.G. Samsonidze, A.K. Swan, M.S. Ünlü, B.B. Goldberg, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 90, 107403 (2003)

    Article  ADS  Google Scholar 

  26. Y. Zhang, Y. Li, W. Kim, D. Wang, H. Dai, Appl. Phys. A 74, 325 (2002)

    Article  ADS  Google Scholar 

  27. O. Jost, A. Gorbunov, X. Liu, W. Pompe, J. Fink, J. Nanosci. Nanotechnol. 4, 433 (2004)

    Article  Google Scholar 

  28. M.H. Rummeli, E. Borowiak-Palen, T. Gemming, T. Pichler, M. Knupfer, M. Kalbac, L. Dunsch, O. Jost, S.R.P. Silva, W. Pompe, B. Buchner, Nano Lett. 5, 1209 (2005)

    Article  Google Scholar 

  29. O.A. Nerushev, S. Dittmar, R.-E. Morjan, F. Rohmund, E.E.B. Campbell, J. Appl. Phys. 93, 4185 (2003)

    Article  ADS  Google Scholar 

  30. A. Maiti, C.J. Brabec, J. Bernholc, Phys. Rev. B 55, 6097 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Saito.

Additional information

PACS

78.67.Ch; 78.67.Bf; 78.67.-n; 81.07.De; 61.46.-w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Nakano, H., Murakami, H. et al. Controllable growth and characterization of isolated single-walled carbon nanotubes catalyzed by Co particles. Appl. Phys. A 85, 103–107 (2006). https://doi.org/10.1007/s00339-006-3678-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3678-x

Keywords

Navigation